Tentukan persamaan garis singgung pada lingkaran dari gradien yang diketahui berikut., a., ;, .

kalau kita melihat pertanyaan ini sering tidak menemukan jawaban dan cara penyelesaianya. kita sudah mencarinya kesana sini diinternet. Untuk menyelesaikan pertanyaan yang sulit tersebut, faq.co.id telah menyiapkan soal beserta caranya. Mulai dari kelas 1 2 3 4 5 6 7 8 9 10 11 12 juga tersedia secara gratis.

diharapkan dengan adanya jawaban soal ini dapat mempermudah kamu dalam belajar di rumah maupun disekolah saat diberikan tugas oleh bapak/ ibu guru. materi yang disediakan sangat lengkap mulai matematika, ipa, ips, penjaskes, kimia, fisika, ekonomi, dan materi pelajaran lainya. oke teman teman jangan berlama lagi mari simak pertanyaan dan penjelasan lengkapnya dibawah ini ya.

PERTANYAAN :

Tentukan persamaan garis singgung pada lingkaran dari gradien yang diketahui berikut.

a. x squared plus y squared equals 16m equals 3.

Table of Contents

Jawaban

didapat persamaan garis singgungnya adalah y equals 3 x plus 4 square root of 10 atau y equals 3 x minus 4 square root of 10.


Pembahasan

Jawaban yang benar untuk pertanyaan tersebut adalah  y equals 3 x plus 4 square root of 10 atau y equals 3 x minus 4 square root of 10.

Ingat! 

Persamaan garis singgung pada persamaan lingkaran x squared plus y squared equals r squared dan bergradien m adalah 

y equals m x plus-or-minus r square root of m squared plus 1 end root

Jika kita perhatikan lingkaran x squared plus y squared equals 16 maka didapat 

table attributes columnalign right center left columnspacing 0px end attributes row cell r squared end cell equals 16 row r equals 4 end table

Jadi persamaan garis singgung pada lingkaran x squared plus y squared equals 16 dengan gradien m equals 3 adalah

y equals m x plus-or-minus r square root of m squared plus 1 end root y equals open parentheses 3 close parentheses x plus-or-minus open parentheses 4 close parentheses square root of open parentheses 3 close parentheses squared plus 1 end root y equals 3 x plus-or-minus 4 square root of 9 plus 1 end root y equals 3 x plus-or-minus 4 square root of 10

Dengan demikian, didapat persamaan garis singgungnya adalah y equals 3 x plus 4 square root of 10 atau y equals 3 x minus 4 square root of 10.


itulah kunci jawaban dan rangkuman mengenai pertanyaan dan pembahasan soal nya. semoga bermanfaat untuk adik dan teman teman semua. nantikan jawaban yang berkualitas lainya hanya di situs faq.co.id ini. Terimakasih semoga dapat nilai yang bagus dan dapat juara kelas ya.

>>>DISCLAIMER <<<

Orangtua dapat mengoreksi kembali jawaban diatas. kunci jawaban ini sebagai bahan referensi dan panduan belajar siswa di rumah. untuk itu siswa dapat memeriksanya kembali apabila ada kesalahan atau penulisan isi jawaban.

Tinggalkan komentar